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SUMMARY 

A finite difference method has been developed to predict the overall features of the local mean flow in 
fully developed turbulent non-circular passage flows. The main transport effects of secondary flow have 
been identified and simulated with diffusion transport in a simple way which eliminates solution of the 
cross-plane momentum and continuity equations and produces a compact calculation method. Predic- 
tions are presented for four different passage shapes and are discussed in relation to experimental 
measurements and predictions from other more complex methods. Although some minor details were 
not predicted, the main effects of secondary flow on the mean flow were found to have been quite well 
simulated, yielding predictions that are in reasonable overall agreement with experiment. 
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1. INTRODUCTION 

The design and development of compact passages for heat exchangers, including those in 
nuclear reactor cores, depends critically on knowledge of the local mean flow and heat 
transfer characteristics. These characteristics are much influenced by the turbulence-driven 
secondary flows that occur in the cross-plane of all nont-circular passages. These flows cause 
the main flow to spiral through the passage and although they are relatively weak compared 
with the main flow, they have a significant influence on the local mean flow distributions of 
interest, chiefly the axial velocity and wall shear stress. 

The main source of information on turbulent passage flows is experiment where, in some 
cases,I4 detailed measurements of secondary velocities and turbulence have been made. 

From these measurements secondary velocities appear to be mainly less than 2 per cent of 
the mean axial velocity with circulation patterns generally from the core region into the 
corners, or equivalent regions bounded by converging walls, returning to the core via the 
wall and wall normals. Figure 1 illustrates the measured flow patterns for square and 
rectangular ducts and for an equilateral triangular duct. The presence and effect of these 
secondary motions was recognized by Nikurad~e’?~ in some of the earliest non-circular duct 
flow experiments where, as shown in Figure 2, axial velocity contours were found to bulge 
markedly into the duct corners. These distortions were interpreted as the convective effects 
of secondary flow and indeed Nikuradse anticipated the circulations shown in Figure 1, 
although it was more than thirty years before his deductions were confirmed by measure- 
ments. The bulging of axial velocity contours into passage corner regions has become a 
recognized secondary flow effect on the mean flow. 

The influence of secondary flow on wall shear stress is even more dramatic than that on 
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(a) square duct  (b) rectangular d u c t  (c)  equilateral tri- 
angular d u c t  

Figure 1. Measured secondary flow patterns 

the axial velocity. The convection of core fluid into the corner will increase velocity gradients 
and thus wall shear stress in the corner wall region. Conversely, convection of the wall region 
fluid away from the wall in the mid-wall region will decrease axial velocity gradients and thus 
wall shear stress in the mid-wall region. This has the combined effect of making the wall 
shear stress more evenly distributed than it would otherwise be. These effects are illustrated 
in Figure 5(a) for the square duct case where the profile calculated without secondary flow 
efkcts is seen to decay monotonically from mid-wall to the corner, whereas the measured 
profile is much more uniform. 

With the almost overwhelming variety of passage shapes that could be of interest and the 
inherent difficulties of setting up experiments and obtaining reliable measurements, the 
development of a calculation procedure to supplement experiment will have obvious ben- 
efits. Such a procedure could provide useful local data with, for example, a much wider range 
of geometry and flow conditions than could be contemplated with experiment. It is clear 
however, that the calculation method must include the effects of secondary flow if local mean 
flow distributions are to be properly predicted. 

Many efforts have been made to develop calculation procedures for particular non-circular 
passages that include the turbulence driven secondary flows in the passage cross-plane. These 
procedures mainly used finite differences and were for the square duct and the axial flow 
passage in rod bundles. A brief overview of these methods is given by Gosman and R a ~ l e y , ~  
from which it is evident that such methods may include the simultaneous solution of up to 
eleven coupled non-linear partial differential equations; the cross-plane momentum and 
continuity equations and the axial momentum equations account for four of these partial 
differential equations, the remainder being required for calculation of the Reynolds stresses 
appearing in the momentum equations. The square duct calculations of Naot et aL8 and 
Reece9 are examples of the more elaborate of these methods where each required Reynolds 
stress was obtained from its own partial differential transport (p.d.t.) equation, i s .  the 
Reynolds stress transport equations. However, in many of the most recent of these finite 
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Figure 2. Measured’ axial velocity contours in a rectangular duct of 
aspect ratio 3.5 
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difference  method^^,^,^^)-'^ the number of p.d.t. equations were reduced by employing 
simplified algebraic forms of the Reynolds stress transport equations. This algebraic stress 
transport model (ASTM) was first derived for square duct calculations by Launder and 
Ying'" and then further analysed by Gessner and Emeryk5 to yield a set of algebraic 
equations for the complete Reynolds stress tensor in terms of axial velocity gradients, 
turbulence kinetic energy k and its dissipation rate E .  

Calculation methods based on the ASTM have been successfully developed for 
fully developed flow in particular passage shapes including the square duct," rod bundle 
passages'','' and an equilateral triangular In these procedures k was calculated from 
its modelled p.d.t. equation16 and E was calculated from the widely used formula obtained 
from dimensional analysis:16 

E = C,k'.5/E (1) 

where C,  is an empirical constant and 1 a turbulence length scale. The latter was prescribed, 
either from experimental measurements" or from the Buleev17 geometric formula4"" 

where S is the distance to the boundary surface in direction +. The cross-plane p.d.t. 
equations were cast into stream function and vorticity form to eliminate pressure and solved 
by finite differences using either Cartesian or polar-cylindrical co-ordinate grids. Considera- 
ble difficulties were encountered with convergence of the solutions, due mainly to the 
coupling and non-linearity of the equations, a feature that was most prominent in the 
cross-plane Reynolds stresses. In some cases simplications were made by omitting the 
cross-plane shear stresses and in others the direction of the secondary flow circulation was 
prescribed in order to obtain reasonable convergence of the solution. 

In the method of Gosman and R a ~ l e y , ~  which was developed for arbitrary shaped ducts, 
both k and E were calculated from their own p.d.t. equations to avoid any special empirical 
inputs for particular passage shapes. The p.d.t. equations for momentum, continuity and 
turbulence were solved directly by finite differences on an orthogonal curvilinear grid 
generated to fit the passage shape. Convergence difficulties were again encountered, particu- 
larly with the cross-plane momentum and continuity equations, where multiple secondary 
flow circulations could appear in the solution to frustrate convergence. These difficulties were 
largely overcome however with a combination of special starting conditions and under- 
relaxation, although much attention needed to be paid to these aspects to ensure converged 
solutions. The predictions of turbulent flow and heat transfer obtained for various passage 
shapes and flows generally displayed the expected secondary flow circulations and features 
and were in reasonable agreement with the available experimental data. 

The previous work has shown that ASTM based calculation methods can be successfully 
used to predict turbulence driven secondary flow and its effects on local mean flow in 
passages. The present work has arisen from this previous work and seeks to establish 
whether simplifications can be made to eliminate solution of the cross-plane momentum and 
continuity equations and produce a procedure that is still capable of predicting the main 
features of fully developed passage flows including the recognized overall secondary flow 
effects. The ultimate aim is to develop a calculation procedure that can be applied to any 
passage shape without special input other than the shape, and that is stable and compact 
enough to be mounted on the current generation of minicomputers and so be of direct use to 
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those concerned with the design and development of flow and heat transfer equipment with 
non-circular passages; 

2. THE MATHEMATICAL PROBLEM 

2.1. Axial momentum 

The axial momentum equation for fully developed turbulent flow in straight passages can 
be written firstly in Cartesian co-ordinates form for clarity and in terms of effective viscosity 
Peff as 

d(puw)/ax +a(pvw)lay = -dp/dz aw/ax)lax +a(pes aw/ay)lay (3)  
where velocity components u and z1 are in cross-plane directions x and y respectively and w 
is in the axial direction z, p represents pressure and the effective viscosity is given by 

Pee= Pt+ CL (4) 

The turbulent viscosity pt can be calculated from the Prandtl-Kolmogorov formula'' for 
generality with passage shape i.e. 

pt = C,k2/e ( 5 )  

where C, is a constant. 
Solution of the axial momentum equation (3)  requires values of k and E for keR and of 

secondary velocity components u and v. The latter would normally require solution of the 
cross-plane momentum and continuity equations with the attendant stability problems 
mentioned in the previous section. However, in a wall bounded region and transport effects 
represented by the two secondary velocity terms on the 1.h.s. of equation ( 3 )  can be 
simplified. A study of secondary velocity measurements (see Figure 1) in square ducts,',2 
rectangular ducts3 and an equilateral triangular duct4 and of calculations which show the 
convective effect of these flows,7 will show that in a wall region, secondary flow normal to the 
wall is negligible and the region is dominated by flow parallel to the wall. If a wall is assumed 
parallel to the x direction, then in the 1.h.s. of equation (3) ,  the first term dominates the 
second which can be neglected. 

In the present work a gross simplification was then made by replacing the convective 
transport effect of the first term in equation (3)  by diffusive transport i.e. 

a(puw)lax = -a(Bpeff aw/ax)/ax (6) 
where B is an empirical constant to be determined. It must be emphasized that there is no 
theoretical justification for equation (6) since the two transport mechanisms are physically 
quite different although they both depend on the same stress fields. The simplification was 
made here since, like the secondary flow, it provided a significant transport effect parallel to 
the wall and was further expedient in eliminating the difficulties and expense of calculating 
the recirculating secondary flow. Equation (3 )  now becomes 

-dp/dz +a({l fB}peffaw/ax)/ax +a(peff aw/ay)/ay = 0 (7) 
Equation (7) has a form similar to that obtained with anisotropic effective viscosities with 

an anisotropy of (1 + B )  and secondary flow neglected. Calculation methods employing 
anisotropic eddy viscosities have, of course, been used for passage flows before although 
mainly for rod bundles. In most cases secondary flow was neglected and anisotropic eddy 
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viscosities introduced to improve the circumferential coupling of the velocity field. The basis 
used to fix the distributions and levels of anisotropy were different in each procedure 
developed. In some cases the levels were postulated (e.g. Vonka and Boonstra”) whilst in 
others fairly elaborate models were developed, usually based on different length scales in 
different directions (e.g. Meyder2’) sometimes chosen intuitively (e.g. Ramm and Johans- 
sen2’). The absence of a consistent approach in these and other methods is probably due to 
the lack of convincing experimental evidence on the anisotropy of eddy viscosities in 
non-circular duct flows. Attempts at such measurements have been made, either directly or 
indirectly (e.g. Rehme?’ Kjellstrom,”” Carajiles~ov’~) but the data is scattered and inconclu- 
sive, due most likely to the shear stresses and axial velocity gradients required being 
dependent on small differences in large measured quantities. 

The presence of a wall will certainly cause anisotropy in turbulent fluctuations as 
evidenced by the higher measured normal stress levels parallel to the wall compared with 
normal to the wall (e.g. Brundrett and Baines’). However, as also indicated by the latter 
measurements, such effects are likely to be confined to the local near-wall region and not 
influenced significantly by flow condition, other walls etc. further away. 

The ASTM based calculation methods mentioned in the previous s e ~ t i o n ~ , ~ , ~ * - ~ ~  used 
isotropic eddy viscosities with secondary flow and predicted the local mean flow generally 
satisfactorily. This suggests that anisotropic eddy viscosities may have only a minor effect 
compared with that of secondary flow. This is the view of Nijsing and Eiffler” who made rod 
bundle calculations with prescribed secondary flows and anisotropic eddy viscosities and 
found secondary flow to have more than three times the effect of anisotropic viscosities on 
the axial velocity field. It appears therefore that the calculation methods using anisotropic 
eddy viscosities and neglecting secondary flow may be mainly compensating for the latter 
neglect of convection transport rather than allowing for any anisotropy in diffusion transport. 

The present work takes the viewpoint that anisotropic eddy viscosity effects are minor and 
so employs isotropic eddy viscosities given by equation (5). The convective transport effects 
of secondary flow on the velocity field are replaced by diffusive transport to eliminate 
solution of the cross-plane momentum and continuity equations and so obtain a more 
compact calculation procedure. 

The rod bundle calculations of Trupp and Aly” included some tests on the effects of 
anisotropic turbulent viscosities on wall shear stress. Similar effects were noted to that of 
secondary flow in making the wall shear stress more uniform and it was further apparent that 
an assumed uniform anisotropy gave results comparable to the more complex distributions 
and levels implied by the measurements of Rehme.22 Thus, as a first step in the present work 
a constant and uniform value of B was assumed to apply throughout the flow field and to be 
universal to all passage geometries calculated. From a parametric study of a range of 
geometries the value of B = 2.5 was adopted. 

2.2. Turbulence equations 

The modelled transport equations used to calculate k and E were the now accepted forms 
appropriate to high Reynolds number flows in which viscous effects are deemed negligi- 
ble.1h,26 For fully developed flow in straight passages they are written in Cartesian form as 

a(Puk)/ax + a(puk) /ay  = a ( { & / U k }  ak/dX)/aX $- a({Pt/@k} ak/ay)/ay + P -  QE = 0 

~ ( P u E ) / ~ x  +a(pvs)/ay =a({wt/ce} a&/ax)/ax +a({pt/@,} a&/ay)/ay + &(C,iP- CF,p&)/k 
(8) 

(9) 
where and crF are the turbulent Prandtl (Schmidt) numbers for k and F respectively, C,, 
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and C,, are constants and P the production rate of k which, neglecting secondary velocity 
gradients, is given by 

___ - 
P=-Pu'w' aw/ax-pdw'awlay  (10) 

The same simplifications were made to the convection transport terms on the 1.h.s. of 
equations (8) and (9) as made in the axial momentum equation yielding: 

a((1 +BXpt/ak) ak/ax)lax +d({pt/@k} aWay)/ay + P -  PE = 0 
a({i + BXptia,} aEiax)iax +a({pt/a,> aE/ay)/ay + &(cS1p- G 2 p 4 / k  = 0 

(11) 
(12) 

2.3. The equations in orthogonal curvilinear co-ordinates 

(11) and (12) which can be written in the following common form: 
The p.d.t. equations to be solved have been reduced to diffusive transport equations (7), 

a({ 1 + B}D, a+/ax)/ax + a(D, a&/ay)lay + c, = 0 (13) 

where 4 stands for w, k or E and D, is the diffusion coefficient associated with each 4. C, 
represents the source and any other terms not contained in the other components. 

The Cartesian equation (13) can be transformed to general orthogonal curvilinear co- 
ordinate form (see for example Pope27) giving an equation of the form 

a(~h21hlX~ +BID+ a4lal1)lXl +a({hJhJD+ ~4 lx2 laC2  + C, = 0 (14) 

where h, and h2 are the metric coefficients in the cross-plane curvilinear co-ordinate 

Table I. Coefficients in the general 
transport equation 

irections and c2 respectively. Table I summarizes D, and C, appropriate to each 4 with 
axial velocity now appearing as u3 in the straight axial co-ordinate direction c3. 

The production rate P of turbulence kinetic energy is now written as 
- ___I 

P = --Pu;u; au3/h, a i l  -PU;U; au31h2 ac2 (15) 
and the turbulent shear stresses as 

- 
PU;  uj = -pt au3lhi 

PW; = -pt du3/h2 a12 
(16) 
(17) 

- 

with pt given by equation (5). 

3. THE NUMERICAL SOLUTION 

3.1. The orthogonal curvilinear mesh 

The p.d.t. equation (13) was solved by finite differences on a rnesh of orthogonally 
intersecting grid lines in three dimensions. In the cross-plane of the passage the grid lines are 
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arc Lengths: 
6 %  = anb 

6 S e  = bec 

6 S ~ p  = NnP 
6Sps = PsS 
S S ~ E  PeE 

6 S s  = dsc 

6 SW = awd 

5 swp = WWP 

Figure 3.  The grid control volumes 

curvilinear and intersect orthogonally with each other and with the passage boundaries. The 
grid nodes are at the points of intersection, through which pass the straight axial lines which 
complete the three dimensional mesh. A portion of a typical cross-plane mesh is shown in 
Figure 3 which also shows the contiguous control volumes or 'cells' surrounding each grid 
node. The boundaries of these cells, shown with broken lines, are fomed in the cross-plane 
by a mesh of lines representing axial planes, mid-way between the main grid lines, and in the 
axial plane by a pair of cross-sectional planes. A typical grid node is denoted by P in Figure 
3,  its nearest neighbours by N, S, E, W and the intersections between control volume faces 
and grid lines as n, s, e, w. These letters are used as suffices to denote the value of a variable 
at that location. 

3.2. Interior control volumes 

The finite difference equivalent of equation (13) was obtained by integrating each term 
over the control volume, using central differencing and linearizing the source term. This 
micro-integration technique helps to ensure that the resulting finite difference equations 
satisfy the relevant conservation principles and was carried out so that all the required areas 
and volumes were obtained in terms of curvilinear arc lengths 8s in the mesh. These 
integrals led to the following standard finite difference equations expressing &, the value of 
Q3 at each location, in terms of the values at the nearest neighbouring nodes i.c. 

AP4P = AN4N + + AE4E + A W 4 W  + (18) 
where coefficients AN, A, etc. are of the form 

Figure 4. Orientation of grid line tangents 
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with the source term linearized and written as 

c, = g<bp+Z: 

The internodal arc lengths SS,, SS,, etc. and the cell face arc lengths SS,, SS, etc. are 
shown in Figure 3 .  

The a coefficients in equations (19) contain the proportion of diffusion factor B approp- 
riate for that location according to the orientation of the local grid line tangent to the normal 
from the nearest boundary surface passing through that point. A typical grid line tangent is 
shown as tl for location e in Figure 4. For the angle 8 shown, the proportion a, was assumed 
to be given by the function:2" 

a ,=cos2t )+( l+B)s in28  (21) 

3.3. Near boundary control volumes 

Passage boundaries were assumed to be either symmetry planes or smooth walls. At the 
former, the normal gradients of all dependent variables will be zero. At the latter, although 
all the variables usually assume known values (e.g. velocity is zero), wall functions were used 
to match the interior solution to the wall conditions. This avoided the large number of grid 
lines that would otherwise be necessary in this region of high gradients. These functions were 
applied to the cell next to the wall which was assumed to be a region of constant shear in 
local equilibrium. This led to conventional wall functions in which the local shear stress rs 
was given by 

7, = p ~ $ C ' / ~ k 1 / ~  (22) 

where the local friction velocity u$ was given by the well known 'log law' (e.g. Schlichting2') 

U $  = ZA,K/h (ES+) (23) 

in which K and E are constants and 

S+ = C:l4 k ' I2  SS,,,Iv 

SS, is the distance normal to the wall and v the fluid kinematic viscosity. This value of T~ was 
assumed to apply at the wall-side control volume face. 

The near-wall value of turbulence kinetic energy was obtained as for the interior control 
volumes with diffusion to the wall set to zero and the production and dissipation calculated 
from T ~ .  

The near-wall value of E was obtained by neglecting transport of E by diffusion and 
assuming a length scale that varied linearly with SS,16 so that 

E = U;'/K as, (25) 

This value was imposed directly at the near-wall node i.e. the finite difference equation was 
not used there. 

3.4. Empirical constants 

The values of the empirical constants used were mainly taken from previous work' and 
were assumed universal to all passage geometries; they were: C, = 0.09, ak = 1-0, a, = 1.22, 
C,, = 1.55, C,, = 2.0, E = 9.02, K = 0-42. 



t

3.5. The solution method 

The finite-difference equations were solved with an iterative line-by-line back-substitution 
method based on the tri-diagonal matrix (Thomas) algorithm (e.g. A m e ~ ~ ~ )  and arranged to 
operate in alternating directions across the mesh. Block adjustment (e.g. A m e ~ ~ ~ )  was also 
applied to speed convergence of the solution. The finite difference equations for u3, k and F 

were solved in sequence and the stresses updated after each sequence. 
The numerical solution was assumed converged when the sum of the absolute axial 

momentum sources over the field was less than 0-001 of the axial momentum flux. Reduction 
of the residual sources below this gave negligible changes to the solution. Discretization 
errors were minimized in the present work by using the meshes and differencing methods 
selected7 after a comprehensive series of accuracy tests which included grid refinement, 
comparisons between solutions with different orthogonal meshes, extensive comparisons of 
laminar flow calculations with analystical solutions anttd symmetry tests with turbulent flow. 
Details of these tests can be found in R a ~ l e y . ~ '  

4. PREDICTIONS 

The local mean flow characteristics of passage flows are represented by the distributions of 
local wall shear stress T~ and axial velocity ug. The former is normalized with the peripherally 
averaged wall shear stress 7, given by 

where M is the passage wall perimeter, dp/df3 the axial pressure gradient and D, the 
equivalent diameter. Axial velocity is normalized with the mean velocity ii3 given by 

A 

C 3  = (1/A)j  u3 d A  
0 

where A represents the passage flow area. The axial pressure gradient is represented by the 
dimensionless wall shear stress or friction factor f where 

f = 7s / tP i im (28) 

4.2.  Square duct 

This duct provided a useful test case since extensive measurements are available and many 
previous authors have applied their duct flow calculation methods to this case. A 12 X 12 
Cartesian mesh was used in a duct symmetry quadrant with a variable spacing grid to give 
more nodes in the wall region. 

The present predictions of wall shear stress and axial velocity are compared with 
experiment and previous predictions in Figure 5 which also shows the predictions with no 
allowance for secondary flow (i.e. B = 0). Compared with the latter, all predictions are seen 
to be in reasonable agreement with experiment and show the accepted main effects of 
secondary flow in that wall shear stress is made more uniform and axial velocity contours 
bulge into the duct corners. Further inspection will reveal that some of the detail has, 
however, not been predicted by the present method. In particular the level of wall shear 
stress at mid-wall is a little high and the slight bulging of axial velocity contours away from 
the wall in the mid-wall symmetry plane (CD in Figure 5(b)) is missing. Both of these effects 
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0.2 0.4 0.6 X'B 0.8 
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( a )  Wall shear stress, Re = 3 . 4 ~ 1 0  4 

experiment : X [311 
[I01 

predictions: --- [I01 

---- 

this w r h  

- - - - - - - -- no allowance 
for sec. f iow 

Figure 5 .  Square duct mean flow 

are likely to be due to convection of the mid-wall region fluid away from the wall by the 
recirculating secondary flow (see Figure 1 (a)). This deficiency in simulating transport effects 
of secondary flow away from the wall is not unexpected however, since the simplifications 
made in the present method were based on secondary flow transport parallel to the wall. 

The predicted friction factor characteristics for square ducts are shown in Figure 6 
compared with experiment. The present prediction is in reasonable agreement with experi- 
ment and an improvement on most of the previous predictions. It is of interest to note that 
the Blasius empirical equation for circular ducts represents the experimental data for square 
ducts very well, implying that the equivalent diameter concept is valid for friction factors in 
this duct. 
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Figure 6.  Square duct friction factor characteristics 

4.2. Rectangular duct 

A 22x 12 Cartesian mesh was used for calculations in the quadrant of a rectangular duct 
of 3 :  1 aspect ratio. The present predictions are compared in Figure 7 with the experiments 
of Leutheusser3' and the calculations of Gosman and Rapley7 which appear to be the only 
previous predictions available for this duct. The secondary flow circulations measured by 
Gessner and Jones3 in a rectangular duct are sketched in Figure l(b). 

11.2 
8 

-_------- -- &&!%ekid 

7 .' I 

0 *2 0.4 x l  B 

0-8 (a) Wal l  shear s t ress  

\ 

1 

\ 

, 

\ 

\ 

\. 

( b )  axial velocity 
predictions: --- PI; 
experiment: 0 1311 ---- [311 

no allowance 
fo r  sec. f low this work; ------ 

Figure 7. Rectangular duct mean flow with Re = 5.6 X lo4 



342 C. W. RAPLEY 

experiment; X [311 

0.004 predictions: 
-. - 

0.003 this work 
Blasius eq. -.__-- t 

I 5x104 105 Re 

Figure 8. Recrdngular duct friction factor characteristics 

As noted in the square duct case, and here most apparent in the axial velocity contours, 
some of the detailed effects due to secondary flow transport normal to the duct walls have 
not been predicted as well as with the Gosman and Rapley method where secondary flows 
were calculated. However, compared with the calculations made with no secondary flow 
effect, the present predictions appear to have simulated the main effects quite well. 

The predicted friction factor characteristic is seen in Figure S to be in fair agreement with 
experiment and an improvement on the prediction of Gosman and Rapley. Friction factors 
are seen to be slightly overpredicted by the equivalent diameter concept. 

4.3. Elliptical duct 

Elliptical cylindrical co-ordinates were used to generate an orthogonal curvilinear mesh for 
the quadrant of an elliptical duct, as shown typically in Figure 9. In this co-ordinate system, 
Cartesian co-ordinates x1 and x2 are related to the curvilinear co-ordinates and c2 by 

where C, is a constant depending on duct aspect ratio (ulb in Figure 9). 
The predicted wall shear stress and axial velocity profiles for a duct of 2.0 aspect ratio are 

compared with experiment in Figure 10. The calculations of Cain et neglected secondary 
flow and assumed isotropic eddy viscosities based on Van Driest type mixing lengths. The 

1 a 
I 

Figure 9. Orthogonal grid for elliptical ducts 
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major axis I 0.2 0.4 0.6 x'B0*8 

5 (a) Axia l  ve loc i ty ,  R = 1*2x10 

0 *6 1 
minor ax is  Y/A 1 

0.2 0.4 0.6 0.8 
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0 [351 
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this work 
no allowance 
f o r  sec. f l o w  
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(b) W a l l  shear st ress,  Re = 1 . 2 ~ 1 0 ~  

Figure 10. Elliptical duct mean flow 

present predictions are seen to be in reasonable agreement with experiment and a considera- 
ble improvement on those of Cain et al. and are at least as acceptable as those of Gosman 
and Rapley which appear to be the only previous calculations available where secondary 
flows were calculated. The secondary flow effects on the predictions are quite dramatic with a 
reduction of peripheral shear stress variation from nearly 30 per cent to about 10 per cent 
which is close to the experimental variation of 8s per cent. 

When compared with the predictions with no secondary flow effect the increase in wall 
stress near the major axis plane (0 = 90") is consistent with the increased axial velocity along 
the major axis plane and is most probably due to the convective transport of core fluid 
towards the wall along the major axis plane by secondary flow. There is a lesser effect of a 
lower level of axial velocity along the minor axis plane apparent in the predictions which is 
most likely due to the recirculating secondary flow convecting wall region fluid towards the 
core. This implied secondary flow circulation pattern is in agreement with that predicted by 
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0.009 experiment: x ~ ~ ~ 2 . 0  [361 

--- BLasius eq. 

2x10 4 5x104 Re 105 
I I 

Figure 11. Elliptical duct friction factor characteristics 

the Gosman and Rapley method but cannot be confirmed by experiment since no measure- 
ments of secondary flow appear as yet to be available. The absence of the above implied 
secondary flow effects on local axial velocity levels is most exaggerated in the predictions of 
Cain et al. and is further evidence of the necessity to include these effects in passage flow 
calculations. 

Figure 11 compares calculated and experimental friction factors for ducts of aspect ratio 
2.0 and greater. The present method is seen to underpredict the measurements of Cain et 
al.36 by about 10 per cent whereas it is in reasonable agreement with the more limited 
measurements of Barrow and Roberts.34 The former measurements are significantly higher 
than values from the Blasius equation for circular pipes which is perhaps surprising since the 
elliptical shape is not too far removed from circular with, as previously noted, only a small 
peripheral variation in wall shear stress. This is in contrast to rectangular ducts where, with 
sharp corners, there is a much greater variation in wall shear stress (see Figure 7) and yet the 
measured friction factors are fairly close to the Blasius equation. The measurements of 
Barrow and Roberts for elliptical ducts of higher aspect ratio than 2.0 are near the Blasius 
equation perhaps implying that those of Cain et al. may be uncharacteristically high, due 
probably to effects such as incomplete flow development, tube surface roughness and 
inaccuracies in duct alignment etc; few details were given by the authors. 

4.4. Rod bundle channel 

With its important application in nuclear reactor cores, this passage shape has received 
much attention from both experimeters and numerical analysts. A numerically generated 
16 x 10 orthogonal curvilinear mesh, similar to that shown in Figure 12 was used for 

Figure 12. Orthogonal grid for rod bundles channels 
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Figure 13. Rod bundle channel mean flow 

calculations in symmetry sub-channels of equilateral triangular infinite arrays with rod 
pitch/diameter (P/D) ratios of 1-1 and 1.123. The conformal mesh generation method used 
can be applied to a wide range of passage shapes and employs finite differences to solve a 
pair of Laplace equations which relate the Cartesian and general orthogonal co-ordinate 
frames-details of the procedure can be found in Rapley.30 

Predictions are compared with experiment in Figure 13 which shows in 13(a) the present 
and all previous predictions of wall shear stress to be in good agreement with experiment. 
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-.- 
[Il l  
1121 
this work 

-.. - - 0.004 

--- - 

2x104 5x1 O4 Re 1p5 
I 

Figure 14. Rod bundle channel friction factor characteristics 
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The effects of secondary flow in making the wall shear stress profile more uniform are well 
simulated. The calculated axial velocity contours from the present method are also in good 
agreement with experiment and generally at least as good as predictions from the more 
complex method of Gosman and R a ~ l e y . ~  The effects of secondary flow in making the axial 
velocity contours bulge into the gap region (closest approach of rods) are quite closely 
simiulated by the present method. 

The friction factor characteristics from the present method are seen in Figure 14 to be in 
reasonable agreement with the experimental data and an improvement on some of the 
previous predictions. 

5. CONCLUSIONS 

The foregoing comparisons have shown the present method to be capable of simulating the 
main effects of secondary flow, producing acceptable local mean flow predictions for fully 
developed turbulent flow in a range of passage shapes. In some cases, the detail has not been 
predicted as well as with other more complex procedures, due mainly to the loss of some of 
the transport effects of secondary flow normal to the passage walls by the assumptions made 
in formulating the method. This slight loss in detail is not serious and is accepted as a not- 
too-severe penalty for the large simplifications made in eliminating solution of the cross- 
plane momentum and continuity equations. These simplifications have the benefit of remov- 
ing the stability and convergence problems inherent in the more complex methods where the 
recirculating secondary flow is calculated and of reducing the required storage and CPU 
time. A typical CPU time for a rod bundle channel solution, including generation of the grid, 
is 7.6 min on an ICL 2950 digital computer which is, for example, only one third of the CPU 
time required for an equivalent calculation including secondary flow with the six p.d.t. 
method of Gosman and R a ~ l e y . ~  

Finally, it is perhaps of interest to note that calculation methods employing anisotropic 
turbulent viscosities and ignoring secondary flow are unlikely to achieve detailed accuracy in 
the prediction of local mean flow in passages. The present work and results from previous 
work in which secondary flows were calculated indicate that anisotropic eddy viscosities may 
have only a minor influence on local mean flow distributions compared with that of 
secondary flow. Thus any shortcomings in the detailed predictions of local mean flow using 
anisotropic eddy viscosities only are likely to be due to the absence of convective secondary 
flow transport effects rather than failure to properly allow for anisotropy in diffusion 
transport. 
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